INDIAN SCHOOL MUSCAT

FINAL EXAMINATION

FEBRUARY 2021

SET B

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers SECTION-A	Marks (with split up)
1.	$\mathbf{R} = \mathbf{R}_0 \; \mathbf{A}^{1/3}$	1
2.	By accelerated or oscillating charge OR Infrared waves	1
3.	Circular path and helical path	1
4.	Solar cell OR 100 Hz	1/2 ,1/2
5.	Magnetic dipole moment	1
6.	3 V	1
7.	Reverse biased	1/2
		1/2
8.	Definition of self-inductance and SI unit OR Any two losses	1
9.	Definition of isotopes One example of isotopes OR Two properties of nuclear force	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂
10.	Deceases Increases	1
11.	d	1
12.	d	1
13.	b	1
14.	b	1
	SECTION-B	
15.	(1) a (2) b (3) b (4) a (5) b	4 x 1
		mark
16.	(1) c (2) c (3) b (4) a (5) b	4 x 1 mark
	SECTION-C	

17.	Derivation of capacitance parallel capacitor	
	Diagram	1/2
	Derivation	11/2
	OR	
	Total current through the circuit is given by $I = V / R$	
	Here, $V = 2 V$	
	$R = (10 + 20) \Omega = 30 \Omega$	
	$\therefore I = \frac{2}{30} = \frac{1}{15} A$	
	30 15 Voltage across 10 Ω resistor	
		1/2
	$=I(10)=10/15=\frac{2}{3}$	
	Charge on the capacitor is given by $Q = CV = (6 \times 10^{-6}) \times 2/3 = 4 \mu C$ (1)	1/2
	$Q = CV = (6 \times 10^{-7}) \times 2/3 = 4\mu C \tag{1}$	
		1
18.		1
	For detection energy of light should be greater than forbidden energy gap	
	D ₂ will detect the light	1
10		1
19.	$F/I = \mu_0/2\pi (I_1 I_2)/r$	1
	$F/I = 2 \times 10^{-4} \text{ N/m}$	1
20.	Two independent sources cannot be maintained constant phase difference	2
20.	1 wo independent sources cannot be maintained constant phase difference	2
	With explanation otherwise 1 mark only	
	OR	1
	When the slit width is doubled, the width of central band will be halved.	1
	I., 4	
	Intensity α Area of aperture	
	Intensity of the central band will be doubled	
21.	Definition of eddy currents	1
	Production of eddy currents	1
22.	(i) Name the three elements of the Earth's magnetic field.	1/2 1/2
		1/2
	(ii)At Equator OR	
	Given: $B_H = 0.4 \text{ G}$	1/2
	or $B_{-}\cos 60^{\circ} = 0.4 \text{ G}$	
	$B_E = \frac{0.4}{\cos 60^{\circ}} \left(\because \cos 60^{\circ} = \frac{1}{2} \right)$	1
	$\frac{D_E}{\cos 60^\circ} = \frac{\cos 60^\circ}{\cos 60^\circ} = \frac{1}{2}$	
	$= 0.4 \times 2 = 0.8 \text{ G}$	1
23.	(a)Two necessary conditions for the phenomena of total internal reflection to occur.	1
	(b) $N = 1/\sin C$	
	(-)-·	1

24.	Verification of laws of reflection by Huygen's principle	
	Diagram	1/2
	Verification	1½
25.	Two difference between n-type and p-type semiconductors	1,1
	SECTION-D	
26.	Statement of mutual inductance	1
	Derivation	2
27.	Derivation for the total energy of the electron in the stationary states of the hydrogen	
	atom.	1
	KE expression	
	PE expression Total energy expression after the substation of value of radius of orbit	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
28.	(a)Distinguish between nuclear fission and fusion.	1/2
20.	explanation how in both these processes energy is released.	1/2
	(b) Calculate the energy release in MeV in the deuterium-tritium fusion reaction:	, 2
	The energy released in the given reaction,	
	$Q = [m\binom{2}{1}H) + m\binom{3}{1}H - \{m\binom{4}{2}He\} + m(n)] u$	2
	or $Q = [2.014102 + 3.016049 - \{4.002603 + 1.008665\}] u$	
	$= 0.018883 \times 931.5 \text{ MeV}$ [:: $1u = 931.5 \text{ MeV}$]	
20	= 17.59 MeV	
29.		
	For point A, when $I = 0 : V_A = E$	
	E u intercent	1
	E = y - intercept	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	For point B, when $V=0$	
	$\therefore E = I_B r \qquad \text{Hence}$	
	$r = \frac{E}{I}$ r = negative slope of V- I graph	
	$I = \frac{1}{I_B}$ = negative slope of V -1 graph	
	OR	
	Solution. (iFor charging, the positive terminal of the DC source is connected to the positive terminal of the battery.	
	DC SOURCE	
	120 V	
	+144 = 0.552 /5.5 SL	
	8.00	
	Therefore, during charging, the effective emf driving the (charging) current in the circuit is	
	E' = 120 V - 8.0 V = 112 V. The series resistor is $R = 15.5 \Omega$. If r be the internal	
	resistance of the battery, the charging current is	1/
	$i = \frac{E'}{R+r} = \frac{112 \text{ V}}{(15.5 + 0.5) \Omega} = 7.0 \text{ A}.$ (ii) The terminal voltage across the battery of emf E	1/2
	during charging is $V = E + i r = 8.0 \text{ V} + (7.0 \text{ A}) (5.0 \Omega) = 11.5 \text{ V}$	
	(iii) The chemical energy stored in the battery in	1
		1

	In absence of 15 Ω current in circuit will be very large	1
	I = 112/0.5 = 224 A	1/2
30.	Derivation of Einstein's photoelectric equation.	2 1/2
	Any two features of photoelectric effect which cannot be explained by wave theory.	72
	OR	
	Statement of de-Broglie hypothesis.	1
	$\lambda_{\alpha} = \frac{h}{\sqrt{2m_{\alpha}q_{\alpha}V}}$	2
	and $\lambda_p = \frac{h}{\sqrt{2m_p q_p V}}$	
	$m_{\alpha} = 4m_{p}$	
	$q_{\alpha} = 4q_{p}$	
	$q_p = e^{-it}$	
	$q_{\alpha} = 4e$	
	$\frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p} \cdot e}{4m_{p} \cdot 2e}} = \frac{1}{2\sqrt{2}}$	
	SECTION-E	
31.	(a) : Current leads the voltage by a phase angle of $\pi/2$, therefore device X is a capacitor. Reactance $X_C = \frac{1}{\omega C} = \frac{1}{2\pi vC}$	1/2
	Here, $v =$ Frequency, $C =$ Capacitance	1
	(b) Graphs of V and I with time.	
	$0 \qquad n/2 \qquad n \qquad 3n/2 \qquad 2n \qquad \omega t$	1
	(c) Reactance of a capacitor is inversely proportional to the frequency of a.c., i.e.	1/2
	$X_C \propto \frac{1}{V}$	1
	and the factories of the second-or during and the second-or during an additional and the second-or during and the second-or during an additional additional and the second-or during an additional additional and the second-or during an additional a	
		1

	(d) Phasor diagram for X (Capacitor)	
	$V_m \sin \omega t$	
	V _m sill de	1
	$I_m \sin \left(\omega t + \pi/2\right)$	1,2
	wit	
	OR	2
	(a) Principle of ac generator	
	(b) Labelled diagram and working ac generator	
	(c) The coil of an ac generator having N turns, each of area A , is rotated with constant	
	angular velocity ω .	
	Derivation of the expression for the alternating emf generated in the coil.	
22	(a) Statement of Course's law in electrostation	1/
32.	(a)Statement of Gauss's law in electrostatics.	1/2
	Explanation of the outward electric flux due to a point charge +q placed at the centre of a cube of	11/2
	side a. Why is it found to be independent of the size and shape of the surface enclosing it?	
	(b) Calculate the electric field intensity (i) in the outer region of the plates, and (ii) in the interior	
	region between the plates.	
	Diagram	1
	Derivation of electric field	1,1
	OR	1,1
	(a) Derivation an expression for the electric E due to a dipole of length '2a' at a point distant r	
	from the centre of the dipole on the axial line.	
	Diagram	1/2
	Derivation	1½
	(b) graph of E versus r for $\mathbf{r} >> \mathbf{a}$.	1
	(c) If this dipole were kept in a uniform external electric field \mathbf{E}_0 , diagrammatically represent the	1
	position of the dipole in stable and unstable equilibrium and write the expressions for the torque	
	acting on the dipole in both the cases.	1,1
33.	(a) Ray diagram to show refraction of ray of monochromatic light passing through a glass prism.	1
	Derivation the expression for the refractive index of glass in terms of angle of prism and angle of minimum deviation.	2
	(b) Ray diagram showing the formation of image by a reflecting type telescope.	2
	OR	
	(a) Derivation a mathematical expression for the width of interference fringes obtained in Young's	

double slit experiment with the help of a suitable diagram.	
Diagram	1
Derivation	2
(b) Any two characteristic features which distinguish between interference and diffraction phenomena.	1,1